Green's Theorem
 Chapters 5,6
 Section 7.1

Daniel Barter

Work

Let $F=\left(F_{1}, F_{2}\right)$ be a force vector (newtons) and $r=\left(r_{1}, r_{2}\right)$ be a displacement vector (meters).

The work (newton meters $=$ joules) done by the force F while a point particle is displaced by r is defined to be

$$
F \cdot r=F_{1} r_{1}+F_{2} r_{2} .
$$

What if the particle doesn't move in a straight line and the force isn't constant?

$$
\begin{aligned}
F & =\left(y^{2}+3, x^{2}+y\right) \\
r & =(x, y)=((1-\cos (t)) \cos (t),(1-\cos (t)) \sin (t)) \quad 0 \leq t \leq 2 \pi
\end{aligned}
$$

Break the path up into small pieces

$$
\begin{aligned}
F(x, y) & =\left(F_{1}(x, y), F_{2}(x, y)\right) \\
d r & =(d x, d y)=\left(x^{\prime}(t) d t, y^{\prime}(t) d t\right) \\
F(x, y) \cdot d r & =F_{1}(x, y) d x+F_{2}(x, y) d y
\end{aligned}
$$

work done $=F_{1}(x(t), y(t)) x^{\prime}(t) d t+F_{2}(x(t), y(t)) y^{\prime}(t) d t$

Sum everything up

total work done $=\int_{a}^{b} F_{1}(x(t), y(t)) x^{\prime}(t) d t+F_{2}(x(t), y(t)) y^{\prime}(t) d t$

Example 1: How much work is done?

$$
\begin{aligned}
F & =\left(y^{2}+3, x^{2}+y\right) \\
r & =((1-\cos (t)) \cos (t),(1-\cos (t)) \sin (t)) \quad 0 \leq t \leq 2 \pi
\end{aligned}
$$

total work $=-5 \pi / 2 \approx-7.85398$

Example 2: How much work is done?

$$
\begin{aligned}
& G=(x, y) \\
& r 1= \begin{cases}(1, t) & -1 \leq t \leq 1 \\
(-t, 1) & -1 \leq t \leq 1 \\
(-1,-t) & -1 \leq t \leq 1 \\
(t,-1) & -1 \leq t \leq 1\end{cases} \\
& r 2=(\cos (t), \sin (t)) \quad 0 \leq t \leq 2 \pi
\end{aligned}
$$

If $r(t)$ is a loop, then we have

$$
\begin{aligned}
\int_{r} G \cdot d r & =\int_{a}^{b} x(t) x^{\prime}(t)+y(t) y^{\prime}(t) d t \\
& =\int_{a}^{b} r(t) \cdot r^{\prime}(t) d t \\
& =\frac{1}{2} \int_{a}^{b} \frac{d}{d t}|r(t)|^{2} d t \\
& =|r(b)|^{2}-|r(a)|^{2}=0
\end{aligned}
$$

Question: What makes the force field $G=(x, y)$ special compared to $F=\left(y^{2}+3, x^{2}+y\right)$?

Green's Theorem: The fundamental idea

$$
\begin{gathered}
P=\overbrace{(x, y)}^{w} v=\left(v_{1}, v_{2}\right) \quad w=\left(w_{1}, w_{2}\right) \\
W:=\int_{\partial P} F_{1}(x, y) d x+F_{2}(x, y) d y=? ?
\end{gathered}
$$

Green's Theorem: The fundamental idea

$$
\begin{aligned}
W & \approx F_{1}(x, y) v_{1}+F_{2}(x, y) v_{2} \\
& +F_{1}\left(x+v_{1}, y+v_{2}\right) w_{1} \\
& +F_{2}\left(x+v_{1}, y+v_{2}\right) w_{2} \\
& -F_{1}(x, y) w_{1}-F_{2}(x, y) w_{2} \\
& -F_{1}\left(x+w_{1}, y+w_{2}\right) v_{1} \\
& -F_{2}\left(x+w_{1}, y+w_{2}\right) v_{2}
\end{aligned}
$$

Green's Theorem: The fundamental idea

$$
\begin{aligned}
W & \approx F_{1} v_{1}+F_{2} v_{2} \\
& +\left(F_{1}+\frac{\partial F_{1}}{\partial x} v_{1}+\frac{\partial F_{1}}{\partial y} v_{2}\right) w_{1} \\
& +\left(F_{2}+\frac{\partial F_{2}}{\partial x} v_{1}+\frac{\partial F_{2}}{\partial y} v_{2}\right) w_{2} \\
& -F_{1} w_{1}-F_{2} w_{2} \\
& -\left(F_{1}+\frac{\partial F_{1}}{\partial x} w_{1}+\frac{\partial F_{1}}{\partial y} w_{2}\right) v_{1} \\
& -\left(F_{2}+\frac{\partial F_{2}}{\partial x} w_{1}+\frac{\partial F_{2}}{\partial y} w_{2}\right) v_{2} \\
& =\left(\frac{\partial F_{2}}{\partial x}-\frac{\partial F_{1}}{\partial y}\right)\left(v_{1} w_{2}-v_{2} w_{1}\right)
\end{aligned}
$$

Green's Theorem: The fundamental idea

If $P={ }_{(x, y)} \square$ is very small, then

$$
\int_{\partial P} F_{1}(x, y) d x+F_{2}(x, y) d y=\left(\frac{\partial F_{2}}{\partial x}-\frac{\partial F_{1}}{\partial y}\right) \operatorname{Area}(P)
$$

We define

$$
\operatorname{curl}(F)=\frac{\partial F_{2}}{\partial x}-\frac{\partial F_{1}}{\partial y}=\operatorname{det}\left(\begin{array}{ll}
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} \\
F_{1} & F_{2}
\end{array}\right)
$$

Double Integrals

Suppose that $A \subseteq \mathbb{R}^{2}$ is a closed region and $f: A \rightarrow \mathbb{R}$ is a function. Then

$$
\int_{A} f(x, y) d x d y=\text { Volume under the graph of } f
$$

$$
f(x, y)=4 x^{2} e^{-x^{2}-y^{2}}+1 \quad 2 \leq x^{2}+y^{2} \leq 5
$$

We can take closed to mean that $\partial A \subseteq A$ in practice, but in theory, precisely defining closed is a subtle issue.

Changing Coordinates

$$
\begin{aligned}
& \int_{2 \leq x^{2}+y^{2} \leq 5}\left(4 x^{2} e^{-x^{2}-y^{2}}+1\right) d x d y \\
& =4 \int_{2 \leq x^{2}+y^{2} \leq 5} x^{2} e^{-x^{2}-y^{2}} d x d y+21 \pi
\end{aligned}
$$

We want to change to polar coordinates:

$$
x=r \cos \theta \quad y=r \sin \theta
$$

$$
\begin{aligned}
& d x=\cos \theta d r-r \sin \theta d \theta \\
& d y=\sin \theta d r+r \cos \theta d \theta
\end{aligned}
$$

Parallelogram rules

$$
\begin{aligned}
d r d r & =0 \quad \text { (parallelogram has zero area) } \\
d \theta d r & =-d r d \theta \quad \text { (parallelogram has reverse orientation) }
\end{aligned}
$$

$$
\begin{aligned}
d x d y & =(\cos \theta d r-r \sin \theta d \theta)(\sin \theta d r+r \cos \theta d \theta) \\
& =r \cos ^{2} \theta d r d \theta-r \sin ^{2} \theta d \theta d r \\
& =r\left(\cos ^{2} \theta+\sin ^{2} \theta\right) d r d \theta=r d r d \theta
\end{aligned}
$$

$$
\int_{2 \leq x^{2}+y^{2} \leq 5} x^{2} e^{-x^{2}-y^{2}} d x d y=\int_{0}^{2 \pi} \int_{2}^{5} r^{3} e^{-r^{2}} \cos ^{2} \theta d r d \theta
$$

Green's Theorem

Let $A \subseteq \mathbb{R}^{2}$ be a closed region and F a vector field on A. Then

$$
\int_{\partial A} F_{1}(x, y) d x+F_{2}(x, y) d y=\int_{A} \operatorname{curl}(F) d x d y
$$

Important: You need to orient the boundary ∂A in the correct way! Boundary components for internal holes are oriented clockwise and outside boundary components are oriented counterclockwise.

Proof:

If $P=(x, y) \square$ is very small, then

$$
\int_{\partial P} F_{1}(x, y) d x+F_{2}(x, y) d y=\operatorname{curl}(F) \operatorname{Area}(P)
$$

$$
\int_{\gamma} F \cdot d r=-\int_{-\gamma} F \cdot d r
$$

Proof:

What makes G special compared to F

$$
\begin{aligned}
& \operatorname{curl}(G)=0
\end{aligned}
$$

Example

Let $A \subseteq \mathbb{R}^{2}$ be a closed region. Then

$$
\int_{\partial A} x d y=\int_{A} 1 d x d y=\text { area of } A
$$

Therefore you can compute the area of A as a line integral around its boundary.

Potentials

Suppose that $A \subseteq \mathbb{R}^{2}$ is a closed region and $f: A \rightarrow \mathbb{R}$ is smooth function.

$$
\begin{aligned}
& \operatorname{curl}(\operatorname{grad}(f))=0 \\
& (x, y)=\operatorname{grad}\left(x^{2} / 2+y^{2} / 2\right)
\end{aligned}
$$

Suppose that F is a vector field and $F=\operatorname{grad}(f)$. We call f a potential for F.

$$
\begin{aligned}
\text { Work } & =\int_{\gamma} F \cdot d r=\int_{\gamma} \operatorname{grad}(f) \cdot d r=\int_{a}^{b} \operatorname{grad}(f)(\gamma(t)) \cdot \gamma^{\prime}(t) d t \\
& =\int_{b}^{a} \frac{d}{d t} f(\gamma(t)) d t=f(\gamma(b))-f(\gamma(a))
\end{aligned}
$$

If a potential exists, work equals difference in potential.

Existence of potentials

Question: Suppose that F is a vector field on the closed region $A \subseteq \mathbb{R}^{2}$ and $\operatorname{curl}(F)=0$. When does a potential exist?
Potential formula: Fix $a \in A$. Then the potential is given by

$$
f(x)=\int_{\gamma} F \cdot d r
$$

where γ is a path in A from a to x.
Question: When is the right hand side independent of γ ?

If A has no holes, then potentials always exist.

$$
\int_{\gamma_{2}} F \cdot d r-\int_{\gamma_{1}} F \cdot d r=\int_{\Gamma} \operatorname{curl}(F) d x d y=0
$$

Example

Consider the vector field $F=(y, x)$.

The potential is given by

$$
f(a, b)=\int_{(0,0)}^{(a, b)} y d x+x d y
$$

Using the path $x=t a, y=t b$ we get $f(a, b)=a b$.

If A has holes, then a potential may not exist.

work around hole $=\int_{\gamma_{1}} F \cdot d r=\int_{\gamma_{2}} F \cdot d r$

Example

$$
\begin{aligned}
F & =\left(\frac{-y}{x^{2}+y^{2}}, \frac{x}{x^{2}+y^{2}}\right) \\
\gamma(t) & =(\cos (t), \sin (t))
\end{aligned}
$$

$\operatorname{curl}(F)=0$. Potential doesn't exist because the force field does 2π work around the origin.

Theorem

Suppose that F is a vector field on the closed region $A \subseteq \mathbb{R}^{2}$ and $\operatorname{curl}(F)=0$. If the work done by F around each hole is zero, then a potential exists.

Higher Dimensional Generalizations of Green's
 Theorem

Chapters 7,8

Daniel Barter

Flux

Let $F=\left(F_{1}, F_{2}, F_{3}\right), A=\left(A_{1}, A_{2}, A_{3}\right)$ and $B=\left(B_{1}, B_{2}, B_{3}\right)$ be vectors.

The flux of F through the paralellagram $A \wedge B$ is exactly

$$
F \cdot(A \times B)=\operatorname{det}(F, A, B)=\operatorname{det}\left(\begin{array}{lll}
F_{1} & F_{2} & F_{3} \\
A_{1} & A_{2} & A_{3} \\
B_{1} & B_{2} & B_{3}
\end{array}\right)
$$

Recall: Green's Theorem

Let F be a vector field on \mathbb{R}^{2} and $P=\square$ a very small paralellagram, then

$$
\int_{\partial P} F_{1}(x, y) d x+F_{2}(x, y) d y=\operatorname{curl}(F) \operatorname{Area}(P)
$$

Question: Is there an analog of Green's theorem for Flux?

Divergence Theorem: local version

Let F be a vector field on \mathbb{R}^{3} and P be the parallelepiped spanned by the vectors A, B and C.

The flux of F through P (with an everywhere outward facing normal vector) is

$$
\begin{aligned}
\text { flux } & =\operatorname{det}(F(x), B, A)+\operatorname{det}(F(x+C), A, B) \\
& +\operatorname{det}(F(x), A, C)+\operatorname{det}(F(x+B), C, A) \\
& +\operatorname{det}(F(x), C, B)+\operatorname{det}(F(x+A), B, C)
\end{aligned}
$$

Divergence Theorem: local version

When P is very small, we have

$$
\begin{aligned}
\text { flux } & \approx \operatorname{det}(D F(x) C, A, B) \\
& -\operatorname{det}(D F(x) B, A, C) \\
& +\operatorname{det}(D F(x) A, B, C) \\
& =\left(\frac{\partial F_{1}}{\partial x}+\frac{\partial F_{2}}{\partial y}+\frac{\partial F_{3}}{\partial z}\right) \operatorname{vol}(P) \\
& \operatorname{div}(F)=\frac{\partial F_{1}}{\partial x}+\frac{\partial F_{2}}{\partial y}+\frac{\partial F_{3}}{\partial z}
\end{aligned}
$$

So, the flux though the small parallelepiped P is exactly $\operatorname{div}(F) \operatorname{vol}(P)$.

Flux through a surface

Let F be a vector field on \mathbb{R}^{3} and $\Sigma \subseteq \mathbb{R}^{3}$ a surface. Choose a parameterization $x(s, t)=\left(x_{1}(s, t), x_{2}(s, t), x_{3}(s, t)\right)$ of Σ. Then the flux of F through Σ is

$$
\int_{\Sigma} F \cdot d \Sigma=\int_{\Sigma} \operatorname{det}\left(F(x(s, t)), \frac{\partial x}{\partial s}, \frac{\partial x}{\partial t}\right) d s d t
$$

Example

Consider a torus $T \subseteq \mathbb{R}^{3}$. We can parameterize it by

$$
\begin{aligned}
& x_{1}(\theta, \phi)=(2+\cos \theta) \cos \phi \\
& x_{2}(\theta, \phi)=(2+\cos \theta) \sin \phi \\
& x_{3}(\theta, \phi)=\sin \theta
\end{aligned}
$$

The flux of $F=\left(F_{1}, F_{2}, F_{3}\right)$ through T is

$$
\int_{-\pi}^{\pi} \int_{0}^{2 \pi} \operatorname{det}\left(F, \frac{\partial x}{\partial \theta}, \frac{\partial x}{\partial \phi}\right) d \theta d \phi=0
$$

Divergence Theorem: global version

Let F be a vector field on \mathbb{R}^{3} and $A \subseteq \mathbb{R}^{3}$ a closed 3-dimensional region with boundary the surface Σ. Then

$$
\int_{\Sigma} F \cdot d \Sigma=\int_{A} \operatorname{div}(F) d x d y d z
$$

Example

Let $F=(x / 3, y / 3, z / 3), A \subseteq \mathbb{R}^{3}$ be a closed 3-dimensional region and $\Sigma=\partial A$. Then $\operatorname{div}(F)=1$ so

$$
\text { Volume of } A=\int_{A} 1 d x d y d z=\int_{\Sigma} F \cdot d \Sigma
$$

3D version of Green's Theorem: local version

Let F be a vector field on \mathbb{R}^{3} and choose a small parallelogram $P=A \wedge B$.

The work done by F around P is

$$
\begin{aligned}
& F(x) \cdot A+F(x+A) \cdot B-F(x) \cdot B-F(x+B) \cdot A \\
& =(D F(x) A) \cdot B-(D F(x) B) \cdot A \\
& =\operatorname{det}(\operatorname{curl}(F), A, B)
\end{aligned}
$$

The work done by F around P is the flux of $\operatorname{curl}(F)$ through P.

3D version of Green's Theorem: global version

Let F be a vector field on \mathbb{R}^{3} and $\Sigma \subseteq \mathbb{R}^{3}$ a surface with boundary curve γ. Then

$$
\int_{\gamma} F \cdot d \gamma=\int_{\Sigma} \operatorname{curl}(F) \cdot d \Sigma
$$

where

$$
\operatorname{curl}(F)=\operatorname{det}\left(\begin{array}{ccc}
e_{1} & e_{2} & e_{3} \\
\partial / \partial x & \partial / \partial y & \partial / \partial z \\
F_{1} & F_{2} & F_{3}
\end{array}\right)
$$

Example

Consider the surface $\left(\sin (\theta) \cos (\phi), \sin (\theta) \sin (\phi), 2 \cos ^{2}(\theta) \sin ^{3}(2 \theta)\right)$ bounded by $(\cos (t), \sin (t), 0)$.

Compute the work done by $F=(-y, x, 0)$ around the boundary circle.

Moral of the Story

Whenever you have a field that can be integrated over d-dimensional parallelograms, you should integrate it over the boundary of a small $d+1$-dimensional parallelogram. This way, you can discover the various different versions of Green's theorem as you need them without having to memorize lots of complicated formulas.
There is a common generalization of all these theorem's called Stoke's Theorem. Come to office hours if you want to learn about it :D

Taylor Polynomials and Series

The Derivative as a Linear Approximation

Consider a function $f: \mathbb{R} \rightarrow \mathbb{R}$. The graph $y=f(x)$ looks something like

The Derivative as a Linear Approximation

The derivative $f^{\prime}(a)$ gives us the best linear approximation to f at (a,f(a)):

Notice that $w=f^{\prime}(a) z$ is just the equation $y-f(a)=f^{\prime}(a)(x-a)$ using the coordinate system z, w which is centered at the point $(a, f(a))$.

Degree d Polynomial Approximation

What is the best degree d polynomial approximation to f at (a,f(a))?

$$
\begin{gathered}
w=T_{a, f, d}(z)=\sum_{k=1}^{d} \frac{f^{(k)}(a)}{k!} z^{k} \\
=f^{\prime}(a) z+\frac{f^{\prime \prime}(a)}{2!} z^{2}+\cdots+\frac{f^{(d)}(a)}{d!} z^{d} \\
y=f(a)+f^{\prime}(a)(x-a)+\frac{f^{\prime \prime}(a)}{2!}(x-a)^{2}+\cdots+\frac{f^{(d)}(a)}{d!}(x-a)^{d}
\end{gathered}
$$

We call $T_{a, f, d}(z)$ the degree d Taylor polynomial for f at a.

Example

Taylor polynomial for $\sin (x)$:
degree 3 at $(0,0) \rightsquigarrow x-x^{3} / 6$ degree 9 at $(4,-0.756802) \rightsquigarrow$
$-0.132216+1.30689 x-0.312849 x^{2}+0.0151476 x^{3}-0.0647837 x^{4}+0.0220721 x^{5}-0.00130555 x^{6}-$ $0.000307201 x^{7}+0.0000460757 x^{8}-1.80127 \cdot 10^{-6} x^{9}$

Example: Bump Function

$$
b(x)= \begin{cases}\exp \left(-\frac{1}{1-x^{2}}\right) & x \in(-1,1) \\ 0 & \text { otherwise }\end{cases}
$$

The taylor polynomial at 1 is 0 for all degrees. Taylor polynomials don't always behave the way you would expect...

The Chain Rule

Recall the chain rule:

$$
(g \circ f)^{\prime}(a)=g^{\prime}(f(a)) f^{\prime}(a)
$$

We can rephrase this as

$$
T_{a, g \circ f, 1}(z)=T_{f(a), g, 1}\left(T_{a, f, 1}(z)\right)
$$

where

$$
T_{a, f, d}(z)=\sum_{k=1}^{d} \frac{f^{(k)}(a)}{k!} z^{k}
$$

The Chain Rule for Higher Derivatives?!

$$
\begin{aligned}
T_{a, f, d}(z) & =\sum_{k=1}^{d} \frac{f^{(k)}(a)}{k!} z^{k} \\
T_{a, g \circ f, d}(z) & =T_{f(a), g, d}\left(T_{a, f, d}(z)\right)+O\left(z^{d+1}\right)
\end{aligned}
$$

The $O\left(z^{d+1}\right)$ means that we just forget the terms which have order z^{d+1} or higher.

The Chain Rule for Higher Derivatives?!

$$
\begin{aligned}
T_{a, g \circ f, 1}(z) & =z f^{(1)}(a) \mathrm{g}^{(1)}(f(a)) \\
T_{a, g \circ f, 2}(z) & =z \mathrm{f}^{(1)}(a) \mathrm{g}^{(1)}(f(a)) \\
& +z^{2}\left(\frac{f^{(1)^{2}}(a) \mathrm{g}^{(2)}(f(a))}{2}+\frac{f^{(2)}(a) \mathrm{g}^{(1)}(f(a))}{2}\right) \\
T_{a, g \circ f, 3}(z) & =z f^{(1)}(a) \mathrm{g}^{(1)}(f(a)) \\
& +z^{2}\left(\frac{f^{(1)^{2}}(a) \mathrm{g}^{(2)}(f(a))}{2}+\frac{f^{(2)}(a) \mathrm{g}^{(1)}(f(a))}{2}\right) \\
& +z^{3}\left(\frac{f^{(1)^{3}}(a) \mathrm{g}^{(3)}(f(a))}{6}+\frac{f^{(1)}(a) f^{(2)}(a) \mathrm{g}^{(2)}(f(a))}{2}+\frac{f^{(3)}(a) \mathrm{g}^{(1)}(f(a))}{6}\right)
\end{aligned}
$$

The Chain Rule for Higher Derivatives?!

$$
\begin{aligned}
(g \circ f)^{(1)}(a) & =f^{(1)}(a) g^{(1)}(f(a)) \\
(g \circ f)^{(2)}(a) & =f^{(1)}(a) f^{(1)}(a) g^{(2)}(f(a)) \\
& +f^{(2)}(a) g^{(1)}(f(a)) \\
(g \circ f)^{(3)}(a) & =f^{(1)}(a) f^{(1)}(a) f^{(1)}(a) g^{(3)}(f(a)) \\
& +3 f^{(1)}(a) f^{(2)}(a) g^{(2)}(f(a)) \\
& +f^{(3)}(a) g^{(1)}(f(a))
\end{aligned}
$$

Taylor Expansions for Solutions to Ordinary Differential

 EquationsConsider the differential equation

$$
f^{\prime}(x)=g(f(x)) \quad f\left(x_{0}\right)=y_{0}
$$

Differentiating i times gives us

$$
f^{(i+1)}(a)=(g \circ f)^{(i)}(a)
$$

Using the chain rule for higher derivatives gives us:

Taylor Expansions for Solutions to Ordinary Differential Equations: Butcher Series

$$
\begin{aligned}
f^{(1)}(a) & =g(f(a)) \\
f^{(2)}(a) & =g(f(a)) g^{(1)}(f(a)) \\
f^{(3)}(a) & =g^{2}(f(a)) \mathrm{g}^{(2)}(f(a))+g(f(a)) \mathrm{g}^{(1)^{2}}(f(a)) \\
f^{(4)}(a) & =g^{3}(f(a)) \mathrm{g}^{(3)}(f(a))+4 g^{2}(f(a)) \mathrm{g}^{(1)}(f(a)) \mathrm{g}^{(2)}(f(a))+g(f(a)) \mathrm{g}^{(1)^{3}}(f(a)) \\
f^{(5)}(a) & =g^{4}(f(a)) \mathrm{g}^{(4)}(f(a))+7 g^{3}(f(a)) \mathrm{g}^{(1)}(f(a)) \mathrm{g}^{(3)}(f(a))+4 g^{3}(f(a)) \mathrm{g}^{(2)^{2}}(f(a)) \\
& +11 g^{2}(f(a)) \mathrm{g}^{(1)^{2}}(f(a)) \mathrm{g}^{(2)}(f(a))+g(f(a)) \mathrm{g}^{(1)^{4}}(f(a)) \\
f^{(6)}(a) & =g^{5}(f(a)) \mathrm{g}^{(5)}(f(a))+11 g^{4}(f(a)) \mathrm{g}^{(1)}(f(a)) \mathrm{g}^{(4)}(f(a))+15 g^{4}(f(a)) \mathrm{g}^{(2)}(f(a)) \mathrm{g}^{(3)}(f(a)) \\
& +32 g^{3}(f(a)) \mathrm{g}^{(1)^{2}}(f(a)) \mathrm{g}^{(3)}(f(a))+34 g^{3}(f(a)) g^{(1)}(f(a)) \mathrm{g}^{(2)^{2}}(f(a)) \\
& +26 g^{2}(f(a)) \mathrm{g}^{(1)^{3}}(f(a)) \mathrm{g}^{(2)}(f(a))+g(f(a)) \mathrm{g}^{(1)^{5}}(f(a))
\end{aligned}
$$

Taylor Expansions for Solutions to Ordinary Differential

 EquationsThe general solution to $f^{\prime}(x)=g(f(x))$ is given by

$$
f(a+x)=\sum_{i=0}^{\infty} \frac{f^{(i)}(a) x^{i}}{i!}
$$

Question: When does this infinite sum make sense?
The general theory of sequences and series is a useful tool for answering this kind of question.

Sequences

A sequence is a never ending list of numbers

$$
a_{0}, a_{1}, a_{2}, \cdots
$$

$1,2,3,4, \cdots$
$1,-1,1,-1, \cdots$
$1,0.1,0.01,0.001, \cdots$
$1,1 / 2,1 / 3,1 / 4, \cdots$

The limit of a sequence

Informally, we say that the sequence a_{n} converges to L if a_{n} gets closer and closer to L as n gets larger and larger.
Formally, we say that $\lim _{n \rightarrow \infty} a_{n}=L$ if for all $\epsilon>0$, there exists an N such that for all $n>N$, we have $\left|a_{n}-L\right|<\epsilon$.

Properties of limits

Suppose that both limits $\lim _{n \rightarrow \infty} a_{n}$ and $\lim _{n \rightarrow \infty} b_{n}$ exist and are finite. Then

$$
\begin{aligned}
\lim _{n \rightarrow \infty}\left(a_{n}+b_{n}\right) & =\lim _{n \rightarrow \infty} a_{n}+\lim _{n \rightarrow \infty} b_{n} \\
\lim _{n \rightarrow \infty}\left(a_{n}-b_{n}\right) & =\lim _{n \rightarrow \infty} a_{n}-\lim _{n \rightarrow \infty} b_{n} \\
\lim _{n \rightarrow \infty}\left(a_{n} b_{n}\right) & =\lim _{n \rightarrow \infty} a_{n} \lim _{n \rightarrow \infty} b_{n} \\
\lim _{n \rightarrow \infty}\left(a_{n} / b_{n}\right) & =\lim _{n \rightarrow \infty} a_{n} / \lim _{n \rightarrow \infty} b_{n}, \lim _{n \rightarrow \infty} b_{n} \neq 0
\end{aligned}
$$

Examples

$$
\begin{aligned}
\frac{n}{n+1} & =\frac{1}{1+(1 / n)} \rightarrow 1 \text { as } n \rightarrow \infty \\
\frac{n}{2 n+3} & =\frac{1}{2+(3 / n)} \rightarrow \frac{1}{2} \text { as } n \rightarrow \infty
\end{aligned}
$$

Monotone Convergence Theorem

Suppose that we have a sequence a_{i} which is increasing $a_{0} \leq a_{1} \leq a_{2} \leq \cdots$ and bounded: there exists some B such that $a_{i}<B$ for all i. Then the limit $\lim _{n \rightarrow \infty} a_{n}$ exists.
Comes for free when constructing \mathbb{R} from \mathbb{Q}.

$$
1,1.4,1.41,1.414,1.4142,1.41421,1.414213, \cdots \rightarrow \sqrt{2}
$$

Orders of Growth

Given two functions $f(n)>0$ and $g(n)>0$ we write

$$
\begin{aligned}
& f(n) \ll g(n) \text { if } \lim _{n \rightarrow \infty} f(n) / g(n)=0 . \\
& f(n) \equiv g(n) \text { if } \lim _{n \rightarrow \infty} f(n) / g(n)=c \text { for some } 0<c<\infty \\
& f(n) \gg g(n) \text { if } \lim _{n \rightarrow \infty} f(n) / g(n)=\infty
\end{aligned}
$$

For example, if we have two degree p polynomials

$$
\begin{aligned}
& f(n)=a_{p} n^{p}+\cdots+a_{1} n+a_{0} \\
& g(n)=b_{p} n^{p}+\cdots+b_{1} n+b_{0}
\end{aligned}
$$

then $f(n) \equiv g(n)$. We call a set of functions equivalent under \equiv an order of growth. We tend to represent an order of growth by the simplest function in the class, for example n^{p} in the above example.

Orders of Growth

$$
\begin{aligned}
& 0 \ll 1 \ll \log (\log (n)) \ll \log (n) \ll \\
& n \ll n \log (n) \ll n^{2} \ll \cdots \ll n^{p} \ll \\
& \cdots \ll e^{n} \ll n!\ll n^{n} \ll n^{n^{n}} \ll \cdots
\end{aligned}
$$

Series

A series is an infinite sum

$$
\sum_{i=0}^{\infty} a_{i}
$$

Associated to a series is the sequence of partial sums

$$
\begin{aligned}
S_{0} & =a_{0} \\
S_{1} & =a_{0}+a_{1} \\
S_{2} & =a_{0}+a_{1}+a_{2} \\
& \vdots \\
S_{n} & =\sum_{i=0}^{n} a_{i}
\end{aligned}
$$

Series

From the sequence of partial sums,

$$
S_{n}=\sum_{i=0}^{n} a_{i}
$$

we define the value of the series as the limit of the sequence of partial sums:

$$
\sum_{i=0}^{\infty} a_{i}=\lim _{n \rightarrow \infty} S_{n}
$$

The Most Important Series

The most important series is the geometric series:

$$
\sum_{i=0}^{\infty} r^{i}
$$

Consider the partial sum

$$
S_{n}=\sum_{i=0}^{n} r^{i}
$$

We have $S_{n}-r S_{n}=1-r^{n+1}$ which implies

$$
S_{n}=\frac{1-r^{n+1}}{1-r}
$$

The Most Important Series

Taking the limit as $n \rightarrow \infty$ gives

$$
\sum_{i=0}^{\infty} r^{i}=\frac{1}{1-r} \text { when }|r|<1
$$

Series and Integration

Suppose that we have a decreasing function $f(x)>0$:

$\sum_{n}^{\infty} f(n)$ converges if and only if $\int_{1}^{\infty} f(x) d x$ converges.

Examples

$\int_{1}^{\infty} \frac{d x}{x^{2}}=1$ so $\sum_{n=1}^{\infty} \frac{1}{n^{2}}$ converges. Infact, $\sum_{n=1}^{\infty} \frac{1}{n^{2}}=\pi^{2} / 6$ as we will see when we get to fourier series.
$\int_{1}^{\infty} \frac{d x}{x}=\infty$ so $\sum_{n=1}^{\infty} \frac{1}{n}$ diverges.
$\int_{1}^{\infty} \frac{d x}{2 \times(2 x+1)}=\ln (3 / 2) / 2$ so $\sum_{n=1}^{\infty} \frac{1}{2 n(2 n+1)}$ converges. Infact, the value is $1-\ln (2)$ (as can be checked using a computer), but I don't know a good explination for this.

The Divergence test

If we have a series $\sum_{n} a_{n}$ which converges to a limit L, then $\lim _{n \rightarrow \infty} a_{n}=0$.

$$
a_{n}=S_{n}-S_{n-1} \rightarrow 0
$$

where $S_{n}=a_{0}+\cdots+a_{n}$.

The Comparison Test

Suppose we have sequences $a_{n} \geq 0$ and $b_{n} \geq 0$ and $\lim _{n \rightarrow \infty} a_{n} / b_{n}=c<\infty$. Then $\sum_{n} a_{n}$ converges if and only if $\sum_{n} b_{n}$ converges.
idea: Once n is large enough, we have $c b_{n} / 2 \leq a_{n} \leq 2 c b_{n}$.
We can use the comparison test to check the convergence of series like

$$
\begin{gathered}
\sum_{n} \frac{2 n^{3}+4 n+1}{5 n^{5}+7 n^{4}+2 n+1} . \\
\frac{2 n^{3}+4 n+1}{5 n^{5}+7 n^{4}+2 n+1} / \frac{1}{n^{2}} \rightarrow 2 / 5
\end{gathered}
$$

Absolute Convergence

We say that a series $\sum_{i}^{\infty} a_{i}$ converges absolutely if $\sum_{i}^{\infty}\left|a_{i}\right|$ converges.
Consider the series $\sum_{n=1}^{\infty}(-1)^{n+1} / n$. It doesn't converge absolutely, but

$$
\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n}=1-\sum_{n=1}^{\infty} \frac{1}{2 n(2 n+1)}=\ln (2)
$$

so it does converge. We call this conditional convergence Absolute convergence is stronger than condition convergence.

What does absolute convergence mean?

If a series $\sum a_{i}$ converges absolutely, then every permutation $\sum a_{\sigma(i)}$ also converges to the same value.
If a series $\sum a_{i}$ converges conditionally, we can rearange the terms to converge to any value:

$$
\sum_{n} \frac{(-1)^{n+1}}{n}=\sum_{n} \frac{1}{2 n+1}-\sum_{n} \frac{1}{2 n}
$$

Both series appearing on the right hand side diverge.

The ratio test

If $\sum a_{n}$ is a series and $\lim _{n \rightarrow \infty}\left|a_{n+1} / a_{n}\right|<1$, then $\sum a_{n}$ converges absolutely.
Idea: Eventually, $\left|a_{n+1} / a_{n}\right|<r<1$ and $\sum_{n} r^{n}$ converges when $r<1$.
The series $\sum_{n} 1 / n!$ converges because

$$
\frac{1 /(n+1)!}{1 / n!}=\frac{1}{n+1} \rightarrow 0
$$

Infact, $\sum_{n} 1 / n!=e$ as we shall soon see.

Power Series

We call the series $\sum_{n} a_{n} z^{n}$ a power series. By the ratio test, it converges absolutely when

$$
\lim _{n \rightarrow \infty}\left|\frac{a_{n+1} z^{n+1}}{a_{n} z^{n}}\right|=|z| \lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|<1
$$

If we set

$$
R=\frac{1}{\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|},
$$

the power series $\sum_{n} a_{n} z^{n}$ converges absolutely when $|z|<R$.
We call R the radius of convergence.
caution! For some pathalogical examples, the limit in R doesn't exist. There is a different test called the root test that gives a formula for R which always exists.

Central Example

The power series

$$
f(z)=\sum_{n=0}^{\infty} \frac{z^{n}}{n!}
$$

has radius of convergence $R=\infty$.
We can check that $f^{\prime}(z)=f(z)$ and $f(0)=1$. Therefore $f(z)=e^{z}$.

Trigonometric Functions

$$
\begin{array}{ll}
\sin (t)=\sum_{n=0}^{\infty} \frac{(-1)^{n} t^{2 n+1}}{(2 n+1)!} & t \in \mathbb{R} \\
\cos (t)=\sum_{n=0}^{\infty} \frac{(-1)^{n} t^{2 n}}{(2 n)!} & t \in \mathbb{R}
\end{array}
$$

More Examples

$$
\begin{gathered}
\frac{1}{1-z}=\sum_{n=0}^{\infty} z^{n} \quad|z|<1 \\
\frac{1}{1+z^{2}}=\sum_{n=0}^{\infty}(-1)^{n} z^{2 n} \quad|z|<1
\end{gathered}
$$

These are taylor expansions at the origin. It is clear why the first has radius of convergence 1 , but not so clear for the second... This will become clear after we start talking about complex numbers.

The Complex Plane

History

Consider the quadratic equation $f(z)=z^{2}+b z+c=0$. It has been known for more than 4000 years that

$$
z=\frac{-b \pm \sqrt{b^{2}-4 c}}{2}
$$

There are three cases:
$b^{2}-4 c>0$: The equation has two distinct roots.
$b^{2}-4 c=0$: Then $f(z)=(z+b / 2)^{2}$, so we should count the root $-b / 2$ twice.
$b^{2}-4 c<0$: There are no solutions.
The simplest example where case 3 occours is $f(z)=z^{2}+1$.

$i=\sqrt{-1}$

We can imagine taking the real numbers \mathbb{R} and formally adjoining $i=\sqrt{-1}$. The resulting number system is called the complex numbers and denoted by \mathbb{C}.
A general complex number is of the form

$$
a+i b \quad a, b \in \mathbb{R} .
$$

$$
\begin{aligned}
\left(a_{1}+i b_{1}\right)+\left(a_{2}+i b_{2}\right) & =\left(a_{1}+a_{2}\right)+i\left(b_{1}+b_{2}\right) \\
\left(a_{1}+i b_{1}\right)\left(a_{2}+i b_{2}\right) & =\left(a_{1} a_{2}-b_{1} b_{2}\right)+i\left(a_{1} b_{2}+a_{2} b_{1}\right) \\
1 /(a+i b) & =\frac{a}{a^{2}+b^{2}}-i \frac{b}{a^{2}+b^{2}}
\end{aligned}
$$

Fundamental Theorem of Algebra

Let $f(z)$ be a degree d polynomial. In the 1800s it was proved that f has exactly d complex roots, when you count them with the correct multiplicity.
In otherwords, we can write

$$
f(z)=\left(z-r_{1}\right) \cdots\left(z-r_{d}\right) \quad r_{i} \in \mathbb{C}
$$

Once you add $\sqrt{-1}$ to your number system, you can fully solve every polynomial equation.

The Complex Plane

A complex number looks like $z=x+i y$ where $x, y \in \mathbb{R}$. Therefore, we should visualize complex numbers as living in the plane:

$$
|z|=\sqrt{x^{2}+y^{2}}
$$

Complex Conjugation

An important operation on complex numbers is complex conjugation:

$$
\bar{z}=x-i y
$$

Complex conjugation swaps the two solutions of $z^{2}+1$.
Geometrically, it corresponds to reflection in the x-axis: $(x, y) \mapsto(x,-y)$. Also, notice that

$$
z \bar{z}=|z|^{2}
$$

Sequences of Complex Numbers

We can have a sequence of complex numbers $a_{0}, a_{1}, a_{2}, \cdots$

For all $\epsilon>0$, there exists an $N>0$ such that $\left|a_{n}-L\right|<\epsilon$ for all $n \geq N$.

Sequences of Complex Numbers

Everything we learned about sequences and series of real numbers carries over to complex numbers.
If $z_{n}=x_{n}+i y_{n}$, then

$$
\lim _{n \rightarrow \infty} z_{n}=\lim _{n \rightarrow \infty} x_{n}+i \lim _{n \rightarrow \infty} y_{n}
$$

A power series

$$
f(z)=\sum_{n=0}^{\infty} a_{n} z^{n}
$$

converges for all $z \in \mathbb{C}$ with $|z|<$ radius of convergence.

Solving a mystery

Recall that

$$
\frac{1}{1+z^{2}}=\sum_{n=0}^{\infty}(-1)^{n} z^{2 n} \quad|z|<1
$$

On the complex plane, the solutions of $z^{2}+1$ look like

The exponential function

We can define the complex exponential function

$$
e^{z}=\sum_{n=0}^{\infty} \frac{z^{n}}{n!} \quad z \in \mathbb{C}
$$

The radius of convergence for this series was ∞, so the series converges absolutely for all complex numbers.
If z is real, this agrees with the exponential function you are all familiar with.

We have $e^{z+w}=e^{z} e^{w}$ for all $z, w \in \mathbb{C}$.

The exponential function

$$
\begin{aligned}
e^{i t} & =\sum_{n=0}^{\infty} \frac{(i t)^{n}}{n!}=\sum_{n=0}^{\infty} \frac{(i t)^{2 n}}{(2 n)!}+\sum_{n=0}^{\infty} \frac{(i t)^{2 n+1}}{(2 n+1)!} \\
& =\sum_{n=0}^{\infty} \frac{(-1)^{n} t^{2 n}}{(2 n)!}+i \sum_{n=0}^{\infty} \frac{(-1)^{n} t^{2 n+1}}{(2 n+1)!} \\
& =\cos (t)+i \sin (t)
\end{aligned}
$$

Notice the formula

$$
e^{i \pi}=-1
$$

which is somewhat famous.

The exponential function

$$
e^{x+i y}=e^{x} e^{i y}
$$

We can use the exponential function to express every complex number in the following form: $r e^{i \theta}$ for $r>0$.

Notice that

$$
r e^{i \theta}=r e^{i(\theta+2 \pi)}
$$

Geometric intuition for complex multiplication

$$
\left(r_{1} e^{i \theta_{1}}\right)\left(r_{2} e^{i \theta_{2}}\right)=r_{1} r_{2} e^{i\left(\theta_{1}+\theta_{2}\right)}
$$

For example, multiplication by i is rotation by $\pi / 2$.

$$
\frac{1}{r e^{i \theta}}=\frac{e^{-i \theta}}{r}
$$

Fourier Series

Periodic Functions

A function $f: \mathbb{R} \rightarrow \mathbb{C}$ is periodic with period ω if

$$
f(t+n \omega)=f(t) \text { for all } n \in \mathbb{Z}
$$

The prototypical example is

$$
e_{k}(t)=\exp \left(\frac{2 \pi k}{\omega} t i\right)=\cos \left(\frac{2 \pi k}{\omega} t\right)+i \sin \left(\frac{2 \pi k}{\omega} t\right)
$$

The function e_{k} is very special:

$$
e_{k}(s+t)=e_{k}(s) e_{k}(t)
$$

This is not true of sin and cos independently, which is the main reason we want to bundle sin and cos up into a single complex valued function.

There are lots of interesting periodic functions!

The linear saw function: $f(x)=x \quad 0 \leq x \leq 1$

There are lots of interesting periodic functions!

The quadratic saw function: $f(x)=x^{2} \quad 0 \leq x \leq 1$

There are lots of interesting periodic functions!

this thing: $f(x)=200000 x^{9}(x-1)^{9} \quad 0 \leq x \leq 1$

There are lots of interesting periodic functions!

The Peter-Weyl Theorem

If $f: \mathbb{R} \rightarrow \mathbb{C}$ is a periodic function with period ω, then we can "represent" f as an infinite sum of our prototypical periodic functions:

$$
f(t)=\sum_{k=-\infty}^{\infty} a_{k} \exp \left(\frac{2 \pi k}{\omega} t i\right)=\sum_{k=-\infty}^{\infty} a_{k} e_{k}(t)
$$

Understanding what is meant by "represent" and when/how this series converges is extremely subtle. This was the reason that humanity decided to develop rigorous foundations for calculus in the 1800s.

How to compute the $a_{k} s$

$$
\begin{gathered}
\frac{1}{\omega} \int_{0}^{\omega} e_{k}(t) \overline{e_{m}(t)} d t= \begin{cases}0 & m \neq k \\
1 & m=k\end{cases} \\
\frac{1}{\omega} \int_{0}^{\omega} f(t) \overline{e_{m}(t)} d t=\sum_{k=-\infty}^{\infty} a_{k} \frac{1}{\omega} \int_{0}^{\omega} e_{k}(t) \overline{e_{m}(t)} d t=a_{m}
\end{gathered}
$$

So we have

$$
a_{m}=\frac{1}{\omega} \int_{0}^{\omega} f(t) \overline{e_{m}(t)} d t
$$

What happens when f is real valued?

$$
\overline{a_{m}}=\frac{1}{\omega} \int_{0}^{\omega} f(t) e_{m}(t) d t=\frac{1}{\omega} \int_{0}^{\omega} f(t) \overline{e_{-m}(t)} d t=a_{-m}
$$

If we allow ourselves to rearange the fourier series, then

$$
f(t)=a_{0}+\sum_{k=1}^{\infty} a_{k} e_{k}(t)+\overline{a_{k} e_{k}(t)}
$$

which is real valued.

Linear saw function: 5, 10, 15 and 20 terms

The wiggly parts at the ends are called Gibbs oscillations.

Quadratic saw function: 5, 10, 15 and 20 terms

Smoothed saw function: 2, 4, 6 and 8 terms

Much more Interesting Examples

https://www.youtube.com/watch?v=-qgreAUpPwM
http://www.theory.physics.ubc.ca/341-current/pluck/ pluck.html

The Derivative of a Periodic Function

If we have a periodic function

$$
f(x)=\sum_{k=-\infty}^{\infty} a_{k} \exp \left(\frac{2 \pi k}{\omega} x i\right)
$$

then we can compute the derivative as follows:

$$
f^{\prime}(x)=\sum_{k=-\infty}^{\infty} \frac{2 \pi k i}{\omega} a_{k} \exp \left(\frac{2 \pi k}{\omega} x i\right)
$$

The Wave Equation

We want to model the vibration of a guitar string:

The system is governed by the differential equation

$$
\frac{\partial^{2} u}{\partial t^{2}}=c^{2} \frac{\partial^{2} u}{\partial x^{2}}
$$

A nice derivation is given in Dave Brenson's book on the mathematics of music: https://homepages.abdn.ac.uk/ d.j.benson/pages/html/music.pdf

Solution using Fourier Series

First take a Fourier expansion in the x variable:

$$
u(x, t)=\sum_{k=-\infty}^{\infty} a_{k}(t) \exp \left(\frac{2 \pi k}{L} i x\right)
$$

Then the wave equation becomes

$$
\sum_{k=-\infty}^{\infty} a_{k}^{\prime \prime}(t) \exp \left(\frac{2 \pi k}{L} i x\right)=\sum_{k=-\infty}^{\infty} a_{k}(t) c^{2}\left(\frac{2 \pi k i}{L}\right)^{2} \exp \left(\frac{2 \pi k}{L} i x\right)
$$

For each k we have

$$
a_{k}^{\prime \prime}(t)=-\left(\frac{2 \pi k c}{L}\right)^{2} a_{k}(t)
$$

Solution using Fourier Series

Solving this differential equation gives

$$
a_{k}(t)=A_{k} \exp \left(\frac{2 \pi k c}{L} i t\right)+B_{k} \exp \left(-\frac{2 \pi k c}{L} i t\right)
$$

The general solution looks like
$u(x, t)=$
$\sum_{k=-\infty}^{\infty}\left[A_{k} \exp \left(\frac{2 \pi k c}{L} i t\right)+B_{k} \exp \left(-\frac{2 \pi k c}{L} i t\right)\right] \exp \left(\frac{2 \pi k}{L} i x\right)$
Notice that the initial condition is

$$
u(x, 0)=\sum_{k=-\infty}^{\infty}\left(A_{k}+B_{k}\right) \exp \left(\frac{2 \pi k}{L} i x\right)
$$

The Heat Equation

Another equation which shows up regularly in physics is the heat equation:

$$
\frac{\partial u}{\partial t}=\alpha \frac{\partial^{2} u}{\partial x^{2}}
$$

It controls the diffusion of heat through a metal loop:

First take a Fourier expansion in the x variable:

$$
u(x, t)=\sum_{k=-\infty}^{\infty} a_{k}(t) \exp \left(\frac{2 \pi k}{L} i x\right)
$$

The heat equation becomes

$$
\sum_{k=-\infty}^{\infty} a_{k}^{\prime}(t) \exp \left(\frac{2 \pi k}{L} i x\right)=\sum_{k=-\infty}^{\infty}-\alpha \frac{4 \pi^{2} k^{2}}{L^{2}} a_{k}(t) \exp \left(\frac{2 \pi k}{L} i x\right)
$$

This gives

$$
a_{k}(t)=A_{k} \exp \left(-\alpha \frac{4 \pi^{2} k^{2}}{L^{2}} t\right)
$$

The initial condition is

$$
\sum_{k=-\infty}^{\infty} A_{k} \exp \left(\frac{2 \pi k}{l} i x\right)
$$

Parseval's Identity

Take a function $f: \mathbb{R} \rightarrow \mathbb{C}$ with period ω. We have the fourier explansion

$$
f(x)=\sum_{k=-\infty}^{\infty} a_{k} \exp \left(\frac{2 \pi k}{\omega} i x\right)
$$

Parseval's Identity:

$$
\frac{1}{\omega} \int_{0}^{\omega}|f(x)|^{2} d x=\sum_{k=-\infty}^{\infty}\left|a_{k}\right|^{2}
$$

Resolving a Mystery from before

Consider the linear saw function $f(x)=x$ with period 1 .
The Fourier expansion is

$$
x=\sum_{k=-\infty}^{-1}-\frac{e^{2 \pi k i x}}{2 \pi k i}+\frac{1}{2}+\sum_{k=1}^{\infty}-\frac{e^{2 \pi k i x}}{2 \pi k i}
$$

Parseval's Identity gives

$$
\sum_{k=1}^{\infty} \frac{1}{k^{2}}=\frac{\pi^{2}}{6}
$$

What about non periodic functions?

Let $f: \mathbb{R} \rightarrow \mathbb{C}$ be a function, not periodic! Can we express $f(t)$ in terms of exponential functions $e^{\zeta i t}$?
Since f is not periodic, there is no condition on $\zeta \in \mathbb{R}$, so it can't just be a series.
Instead, we can look for a function $\widehat{f}(\zeta)$

$$
f(t)=\int_{-\infty}^{\infty} \widehat{f}(\zeta) e^{\zeta i t} d \zeta
$$

What is the formula for $\widehat{f}(\zeta)$?

We can try and imitate what happened in the Fourier series case:

$$
\int_{-\infty}^{\infty} f(t) e^{-\eta i t} d t=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \widehat{f}(\zeta) e^{(\zeta-\eta) i t} d \zeta d t
$$

The right hand side doesn't converge absolutely, so we can't just swap the order of integration. If we dampen the integrand along the t-axis, then we can swap the order of integration:

$$
I_{\epsilon}=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \widehat{f}(\zeta) e^{(\zeta-\eta) i t} e^{-\epsilon^{2} t^{2}} d \zeta d t
$$

I call this the Feynman trick.

What is the formula for $\widehat{f}(\zeta)$?

$$
\begin{aligned}
I_{\epsilon} & =\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \widehat{f}(\zeta) e^{(\zeta-\eta) i t} e^{-\epsilon^{2} t^{2}} d \zeta d t \\
& =\int_{-\infty}^{\infty} \widehat{f}(\zeta) \int_{-\infty}^{\infty} e^{(\zeta-\eta) i t} e^{-\epsilon^{2} t^{2}} d t d \zeta \\
& =\sqrt{\pi} \int_{-\infty}^{\infty} \widehat{f}(\zeta) \frac{\exp \left(-\left[\frac{\zeta-\eta}{2 \epsilon}\right]^{2}\right)}{\epsilon} d \zeta
\end{aligned}
$$

We can simplify further by making the following change of coordinates: $\zeta=2 x+\eta$

$$
I_{\epsilon}=2 \sqrt{\pi} \int_{-\infty}^{\infty} \widehat{f}(2 x+\eta) \frac{\exp \left(-\left[\frac{x}{\epsilon}\right]^{2}\right)}{\epsilon} d x
$$

The area under the graph of $\exp \left(-\left[\frac{x}{\epsilon}\right]^{2}\right) / \epsilon$ is $\sqrt{\pi}$, independent of ϵ. Moreover, it gets more and more concentrated around 0 as $\epsilon \rightarrow 0$.

Therefore, $I_{\epsilon} \rightarrow 2 \pi f(\eta)$.

The Fourier Transform

We have

$$
\widehat{f}(\zeta)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} f(t) e^{-\zeta i t} d t
$$

Notice that the Fourier transform is only going to behave well when f decays to 0 as t converges to ∞ or $-\infty$.

Fourier Transforms and Derivatives

The fourier transform interacts nicely with derivatives:

$$
\frac{\widehat{d f}}{d t}(\zeta)=(\zeta i) \widehat{f}(\zeta)
$$

This is very useful for solving differential equations

Some interesting facts

$$
f(t)=e^{-t^{2}} \quad \widehat{f}(\zeta)=\frac{e^{-\zeta^{2} / 4}}{2 \sqrt{\pi}}
$$

Suppose we take functions $f(t), g(t)$. We define their convolution

$$
(f * g)(t)=\int_{-\infty}^{\infty} f(s) g(t-s) d s
$$

Then we have

$$
\widehat{f * g}(\zeta)=2 \pi \widehat{f}(\zeta) \widehat{g}(\zeta)
$$

These are the main ingredients used to prove the central limit theorem.

